p. 38-39 Solving Log Equations- One to One Property

One to one property of logarithms-Notes
If $b^{x}=b^{y}$ then $x=y$ One to one property.
Using this property, solve the following equations.
1.) $6^{2 x-3}=6^{3(x+3)}$

$$
\begin{aligned}
& 2 x-3=3(x+3) \\
& 2 x-3=3 x+9 \\
& -2 x-9 \\
& -12=1 x
\end{aligned}
$$

3.) $6^{-2 x+5}=6^{3}$

$$
\begin{gathered}
-2 x+5=3 \\
-5=-5 \\
\frac{-2 x}{-2}=\frac{-2}{-2} \\
x=1
\end{gathered}
$$

2.)

$$
\begin{aligned}
& 2(3 a=2-1(-2 a-3) \\
& 3 a=2 a+3 \\
& -2 a-2 a \\
& a=3
\end{aligned}
$$

4.) $5^{3 x+1}=5^{4}$

$$
\begin{gathered}
3 x+1=4 \\
-1=1 \\
3 x=\frac{3}{3} \\
3=1
\end{gathered}
$$

One to one property of logarithms-Notes
If $\log _{b} x=\log _{b} y$, then $x=y$ One to one property.
Using this property, solve the following equations.
5.) $\log _{9}(-5 x-10)=\log _{9}(-4 x+4)$

$$
\begin{aligned}
& -5 x-10=-4 x+4 \\
& +4 x=4 x \\
& -x=10=4 \\
& \frac{-x}{-1}=\frac{14}{-1} x=-14
\end{aligned}
$$

7.) $\log _{10}(100+5 x)=\log _{10}\left(x^{2}+5 x\right)$

6.)

$$
\begin{gathered}
\log _{2}(-2 x+3)=\log _{2}(-3 x+5) \\
-2 x+3=-3 x+5 \\
+3 x \\
x+3=5 \\
-3-3 \\
x=2
\end{gathered}
$$

8.) $\log _{5}(2 x-6)=\log _{5} x$

$$
x= \pm 10
$$

$$
\begin{aligned}
& 2 x-6=x \\
& -2 x \quad-2 x \\
& \frac{-6}{-1}=\frac{-x}{-1} \\
& 6=x
\end{aligned}
$$

Homework - Worksheet

