10.1b
 Distance in
 Coordinate Geometry

10.1b

The Distance Formula

1.

$6^{2}+8^{2}=C^{2}$
$36+64=c^{2}$

2.

How about when two points are too far? It is unrealistic to plot them.
3. Given the points $(15,34)$ and $(42,70)$
a. Find the horizontal distance between these points.

b. Find the vertical distance between these points.

C. Use Pythagorean Thm. to find the distance between point A and B.

$\sqrt{2025}=A B$

Exploring the distance formula.
If $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ are points in a coordinate plane, then the distance between A and B is:
a. Write an expression to represent the horizontal distance between the two points.

b. Write an expression to represent the vertical distance between the two points.

$$
\left(y_{2}-y_{1}\right)
$$

d. Solve for AB .
C. Use your expressions from \mathbf{a}, \mathbf{b}, and plug into the

The Distance formula: $\quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)}$
Examples: Find the distance between the following sets of points. Give an exact answer (no decimals)
4. $\begin{aligned} & \left.x_{1}, y_{1}, x_{2}, y_{2} \text { and } 3,8\right)\end{aligned}$

$$
\begin{aligned}
& d=\sqrt{(3-5)^{2}+(8-0)^{2}} \\
& d=\sqrt{(-2)^{2}+8^{2}} \\
& d=\sqrt{4+64} \\
& d=\sqrt{68} \\
& d=2 \sqrt{17}
\end{aligned}
$$

5. | x_{1} | y_{1} |
| ---: | :--- |
| $(-4,0)$ | x_{2} |
| x_{2} | $y_{2}(8,-1)$ |

$$
\begin{aligned}
& d=\sqrt{(8++4)^{2}+(-1-6)^{2}} \\
& d=\sqrt{12^{2}+(-7)^{2}} \\
& d=\sqrt{144+49} \\
& d=\sqrt{193}
\end{aligned}
$$

Perimeter of

$$
\begin{array}{ll}
C D=\sqrt{(-8-4)^{2}+(2-5)^{2}} & D A=\sqrt{(-4--4)^{2}+(5-8)^{2}} \\
C D=\sqrt{25} & D A=\sqrt{25} \\
C D=5 & D A=5
\end{array}
$$

Perimeter: $\frac{5+5}{1}+\sqrt{10}+\sqrt{10}$

$$
\frac{10+1 \sqrt{10}+1 \sqrt{10}}{10+2 \sqrt{10}}
$$

