Learning Targets:

a. I can identify parts of geometric solids
b. I can classify geometric solids

Warm-up

Use Figure A to answer the questions below

1) Name the solid triangular prism
2) Name the Bases $\triangle A B C \quad \xi_{i}^{i} \triangle$ DEF

3) Name the Lateral Faces $D E B A, A C F D$.
4) How many Vertices are there?

6
5) How many Edges are there? \square
$A=\frac{1}{2}(b)(h)=\frac{1}{2}(6)(8)=24$
Base 1 Area $=24 \mathrm{~m}^{2}$
Base 2 Area $=24 m^{2}$

We call the solid shown in Figure A a right prism.
A right prism is a prism whose lateral faces are rectangles. Its lateral edges are perpendicular to its bases.

Similarly, a cylinder is a right cylinder if the axis - the segment connecting the centers of the bases- is perpendicular to its bases.

The Height of a Right Prism or Right Cylinder is the perpendicular distance between the Bases.

Figure A

What is the height of the prism in Figure A above?

Determine the heights of each of the following solids.

Height $=$

Use the shaded sides of the prism below as your Bases

The pyramid in Figure B and the cone in Figure C have two types of heights that can be identified: A height and a slant height.

The Height of each of these solids is the perpendicular distance from its vertex (or apex) to the center of its Base.

The Slant Height of the Pyramid is the height of each triangular lateral face. The Slant Height of the Cone is the distance along cone's lateral surface from the edge of the circular base to its vertex (or apex)

Figure B
Figure C

Label the "height" and "slant height" of each of the Figures above.

1) Determine the slant height of the cone.

2) Determine the height of the square pyramid using the given information.

3) The base of a cone has a diameter of 10 ft . Determine the height of the cone if the slant height is 13 ft . Draw and label a picture first.

$$
\begin{aligned}
& x^{2}+5^{2}=13 \\
& x^{2}+25=169 \\
& \sqrt{x^{2}=\sqrt{144}}-25
\end{aligned}
$$

$$
\text { Height }=12 \mathrm{ft}
$$

Assignment:
11.1 and 1.8 Geometry of Solids Homework Day 2

