9.1 Tangent Properties

a. I can determine and apply the relationship between a radius and a tangent line at the point of tangency.
b. I can determine and apply the relationship between two tangent segments with a common endpoint outside the circle.

In this lesson you will investigate the relationship between a tangent line to a circle and the radius of the circle, and between two tangent segments to a common point outside the circle.

Rails act as tangent lines to the wheels of a train. Each wheel of a train theoretically touches only one point on the rail. The point where the rail and the wheel meet is a point of tangency. Why can't a train wheel touch more than one point at a time on the rail? How is the radius of the wheel to the point of tangency related to the rail? Let's investigate.

[^0]

Please get

- 1 piece of patty paper
- protractor
- compass

1. Draw a circle on your patty paper using your compass, leave sufficient room to be able to draw a point outside the circle as shown below.
2. Label points P and S
3. Using your protractor, draw two rays from point S that are tangent to Circle P. Label the points where they appear to touch the circle with Points A and G.

$$
R S \cong T S
$$

Tangent Conjecture

A tangent to a circle is per pendicu/ar tahe radius drawn to the point of tangency.

Tangent Segments Conjecture

Tangent segments to a circle from a point outside the circle are

Examples

1. $\overline{F E}$ is tangent to circle D at point E.
2. $\overline{K J}$ is tangent to circle H at point J . Find $\overline{D E}$.

Find the radius of circle H .

Solve for the value of \boldsymbol{x}.
3.

4.

$\begin{aligned} 5 x-2 & =3 x+4 \\ -3 x & -3 x \\ 2 x-2 & =4 \\ +2 & +2\end{aligned}$

5. Find the perimeter of the polygon below.

$P=78$
6. Given $\mathrm{AB}=18, \mathrm{BC}=10$, and $\mathrm{CD}=15$. Find $A D$.

[^0]: Discovering Geometry
 ©2015 Kendall Hunt Publishing

