9.3 Geometric Sequences
a. I can identify a geometric sequence and state its common ratio.
b. I can write an explicit rule for a geometric sequence.

1. Given a term and common ratio.
2. Given a sequence.
c. I can find the nth term of a geometric sequence.
p. 46-47 Geometric Sequences 9.3
p. 46-47 Geometric Sequences 9.3

Warm-up : Write the sequence in your notes

$$
\{20,14,8, \ldots \quad \text { p. } 46
$$

a. Identify the common difference.

$$
d=-6
$$

b. Write the Explicit Formula

$$
a_{n}=a_{1}+(n-1)(d)
$$

$$
a_{n}=20+(n-1)(-6)^{\prime}
$$

c. Find the 75 th term using your Explicit Formula

$$
\begin{gathered}
a_{75}^{n=75}=20+(75-1)(-6) \\
-424
\end{gathered}
$$

Yesterday we learned about arithmetic sequences.

Are the following Arithmetic sequences?
 Explain why or why not.

$\{1,2,3,4,5, \ldots$ yes
$\{1,2,4,8,16, \ldots$
$n o$
$x_{2} \times 2 \times 2$

Geometric Sequences

Geometric Sequence: a sequence where each term after the 1st is found by Mu/tiplying the previous term by a constant. Common Ratio (r): the number you multiply by to get the next term.

You can find the Common Ratio by dividing any term in the sequence by its previous term. $r=a_{n} / a_{n-1}$
のーォーmミOmの

$$
a_{n}=a_{1}(r)^{(n-1)}
$$

O	S
M	E
E	O
T	U
R	E
I	E
C	N
	C
	E

$\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{\text {th }}$ term in the sequence
$a_{1}=$ first term in the sequence
$\mathrm{r}=$ common ratio
$\mathrm{n}=$ \＃of term in the sequence

1．Determine the next terms of the geometric sequence then write the Explicit Formula

$$
\begin{aligned}
& \left\{5, \frac{15,45}{5}, \frac{405}{45}, \frac{1215}{15}, \ldots\right. \\
& a_{1}=\frac{5}{3} \quad \text { Explicit Formula } \\
& r=3
\end{aligned} a_{n}=5(3)^{n-1}
$$

Use the Explicit Formula to find the $9^{\text {th }}$ term

$$
n=9
$$

2. Determine the next terms of the geometric sequence then write the Explicit Formula

Use the Explicit Formula to find the $9^{\text {th }}$ term

Find the $\mathbf{n}^{\text {th }}$ term using an Explicit Formula
3. $a_{1}=200$

$$
r=\frac{1}{2}, \quad n=7
$$

$$
a_{n}=200\left(\frac{1}{2}\right)^{n-1}
$$

$a_{7}=200\left(\frac{1}{2}\right)^{(1-1)}=3.125$
4.

$$
\begin{aligned}
& \begin{aligned}
\{-3,9,-27, \\
-3
\end{aligned},-243,729, \ldots \begin{aligned}
\frac{-27}{9} & =-3 \\
\frac{9}{-3} & =-3
\end{aligned} \\
& a_{1}=-3 \quad \text { Explicit Formula } \\
& r=-3 \\
& \text { Explicit Formula } n-1 \\
& a_{n}=-3(-3)
\end{aligned}
$$

6. $6,-30,150,-750, \ldots$
a.) Explicit Formula
b.) Find a_{8}

$$
a_{1}=6
$$

$$
r=-5
$$

$$
a_{8}=6(-5)^{8-1}
$$

Closing Question

You decide to try a new savings plan. You will deposit $\$ 10$ at the end of week 1, \$20 at the end of week 2, and \$40 at the end of week 3. You will continue this pattern.
a) What kind of sequence is this? Arithmetic / Geometric
b) Write an Explicit Formula that represents the sequence described
c) Using your formula from part B, how much money will you deposit in week 10 ?

Practice!

