Learning Targets
a. I can find the sum of a finite geometric series
b. I can use my knowledge of geometric series and apply them to application problems

p. 52-53
 Geometric Series

p. 52-53 Geometric Series
 9.5

Warm-up:

Find the SUM of the first 10 terms of an arithmetic sequence if $a_{1}=8$, and $a_{10}=35$. Show your work.

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \\
& S_{10}=\frac{10}{2}(8+35) \\
& S_{10}=215
\end{aligned}
$$

Geometric Series :
Sum of terms of a Geometric Sequence

We can find the partial sum of \mathbf{n} number of terms of a geometric sequence using the formula:

$$
\begin{aligned}
& \text { Geometric } \\
& \text { Partial Sum }
\end{aligned} \quad S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{(1-r)} r \neq 1
$$

1.) Find the sum of the first t 7 terms when $a_{1}=4$ and $r=3$

$$
s_{7}=\frac{4\left(1-3^{7}\right)}{(1-3)}
$$

2.) Find the sum of the first 6 terms of the series below

$$
\begin{array}{ll}
\{2+8+32+\ldots & a_{1}=2 \\
s_{6}=\frac{2\left(1-4^{6}\right)}{(1-4)} & r=4=6 \\
& S_{6}=2,730
\end{array}
$$

Geometric
Partial Sum

3.) A virus goes through a computer infecting files. If 1 file was infected initially and the number of new files infected doubles every minute.
a. Write the next 4 terms of the series representing the situation

$$
1+2+4+8+16+32+64+\ldots
$$

b. Write the Formula that represents the series described above

$$
S_{n}=\frac{1\left(1-2^{n}\right)^{2}}{(1-2)}
$$

c. Using the Formula from part B, find the TOTAL number of files infected after

Geometric Partial Sum

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{(1-r)} \quad r \neq 1
$$

4.) You are saving up for car. You begin by setting aside $\$ 15$. The following month you set aside $\$ 45$. The month after that you set aside $\$ 135$. You plan to continue this pattern for 8 months.
a. Write the Formula that represents the series described above

$$
\left.S_{n} S_{n} \frac{11}{(1)}(1-3)^{n}\right)
$$

b. Using the Formula from part A, find your TOTAL savings after 8 months.

$$
\frac{15(1-3)}{(1-3)}=49,200
$$

