Regular Polygon: a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length).

Suppose the following two pizzas cost the same price. Which pizza is the better deal, a circular pizza with a 16 inch diameter or a regular hexagonal pizza where both the radius and side length 8 inches long? Why?

$$
A=\frac{1}{2}(8)(6.9)
$$

$$
A=27.6
$$

$A=6(27.6)$

Investigation \#2: Deriving the Area of a Regular Polygon

Step 1: Consider a regular pentagon with side length 5 , divided into congruent isosceles triangles. Each triangle has a base s and a height a. Step 1 What is the area of one isosceles triangle in terms of a and s ?

Step 2: What is the area of this pentagon in terms of a and s ?

Step 3: Repeat Steps 1 and 2 with other regular polygons and complete the table below.

Regular hexagon

Regular heptagon

Area Formula for Regular Polygons:
The area of a regular polygon where A is the area, P is the perimeter, a is the apothem, is given by:

1. Use the area formula for a regular polygon to find the area of the pizza below.

$$
\begin{aligned}
& \begin{array}{l}
\text { Sides } \\
A=\frac{1}{2} P a \\
A=\frac{1}{2}(37.5)(5.1)
\end{array} \\
P=5(7.5) & A=95.625 \\
P=37.5 &
\end{aligned}
$$

\qquad
length of the apothem of the hexagon.
12
P

$$
a=14.5 \mathrm{~m}
$$

$$
a=14.5 \mathrm{~m}
$$

4.4 ft

$$
\begin{aligned}
& \text { 合 } \\
& A=\frac{1}{2} P_{a} \\
& 33=\frac{1}{2} P(3) \\
& P=n \cdot s \quad \frac{33}{1.5}=\frac{1.5 P}{1.5} \\
& \frac{22}{5}=\frac{5 \mathrm{~s}}{5} \quad 22=P
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[12]{12}]_{12}^{12} \\
& \left.2 \cdot{ }^{\circ}\right)^{12} \quad A=\frac{1}{2} \mathrm{~Pa} \\
& \begin{array}{l}
12(12)=72 \frac{522}{36}=\frac{36 a}{36}
\end{array}
\end{aligned}
$$

Assignment:
8.3 Regular Polygons. \#1-3 only

Note for \#2a - side length is 12

